Homotopy Theory of Hopf Galois Extensions

نویسندگان

  • CHRISTIAN KASSEL
  • HANS-JÜRGEN SCHNEIDER
چکیده

We introduce the concept of homotopy equivalence for Hopf Galois extensions and make a systematic study of it. As an application we determine all H-Galois extensions up to homotopy equivalence in the case when H is a Drinfeld-Jimbo quantum group.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantum principal bundles up to homotopy equivalence

Hopf-Galois extensions are known to be the right generalizations of both Galois field extensions and principal G-bundles in the framework of non-commutative associative algebras. An abundant literature has been devoted to them by Hopf algebra specialists (see [Mg], [Sn1], [Sn2] and references therein). Recently there has been a surge of interest in Hopf-Galois extensions among mathematicians an...

متن کامل

Homotopic Hopf-Galois extensions of commutative differential graded algebras

This thesis is concerned with the definition and the study of properties of homotopic Hopf-Galois extensions in the category Ch 0 k of chain complexes over a field k, equipped with its projective model structure. Given a differential graded k-Hopf algebra H of finite type, we define a homotopic H-Hopf-Galois extension to be a morphism ' : B ! A of augmented H-comodule dg-k-algebras, where B is ...

متن کامل

From Galois to Hopf Galois: Theory and Practice

Hopf Galois theory expands the classical Galois theory by considering the Galois property in terms of the action of the group algebra k[G] on K/k and then replacing it by the action of a Hopf algebra. We review the case of separable extensions where the Hopf Galois property admits a group-theoretical formulation suitable for counting and classifying, and also to perform explicit computations an...

متن کامل

Coalgebra-galois Extensions from the Extension Theory Point of View

Coalgebra-Galois extensions generalise Hopf-Galois extensions, which can be viewed as non-commutative torsors. In this paper it is analysed when a coalgebra-Galois extension is a separable, split, or strongly separable extension.

متن کامل

On the Galois Correspondence Theorem in Separable Hopf Galois Theory

In this paper we present a reformulation of the Galois correspondence theorem of Hopf Galois theory in terms of groups carrying farther the description of Greither and Pareigis. We prove that the class of Hopf Galois extensions for which the Galois correspondence is bijective is larger than the class of almost classically Galois extensions but not equal to the whole class. We show as well that ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008